LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification of hyperspectral images by deep learning of spectral-spatial features

Photo from wikipedia

Creating accurate land use and land cover maps using remote sensing images is one of the most important applications of remotely sensed data. Abundant spectral information in hyperspectral images (HSI)… Click to show full abstract

Creating accurate land use and land cover maps using remote sensing images is one of the most important applications of remotely sensed data. Abundant spectral information in hyperspectral images (HSI) makes it possible to distinguish materials that would not be distinguishable by multi-spectral sensors. Spectral and spatial information from HSI is of primary importance for image classification. In this study, a hybrid stacked autoencoder (SAE) architecture and support vector machine (SVM) classifier was constructed to classify the HSI. The SAE architecture is constituted by stacking a multiple autoencoder (AE) deep learning network that consists in the encoder and decoder process. Spatial features in a neighbor region extracted from the principal component analysis (PCA) and the texture feature extracted from the gray-level cooccurrence matrix (GLCM) were fed into the classifier. It was found that the best result was from the combination of GLCM texture feature, PCA spatial feature, and spectral feature. Meanwhile, the representative features derived from SAE deep learning network were better than the original features. It reminded us that extracting the representative features from hyperspectral images is a key step of improving classification accuracy.

Keywords: feature; spectral spatial; classification hyperspectral; spatial features; deep learning; hyperspectral images

Journal Title: Arabian Journal of Geosciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.