LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying key genes associated with Hirschsprung’s disease based on bioinformatics analysis of RNA-sequencing data

Photo from wikipedia

BackgroundHirschsprung’s disease (HSCR) is a type of megacolon induced by deficiency or dysfunction of ganglion cells in the distal intestine and is associated with developmental disorders of the enteric nervous… Click to show full abstract

BackgroundHirschsprung’s disease (HSCR) is a type of megacolon induced by deficiency or dysfunction of ganglion cells in the distal intestine and is associated with developmental disorders of the enteric nervous system. To explore the mechanisms of HSCR, we analyzed the RNA-sequencing data of the expansion and the narrow segments of colon tissues separated from children with HSCR.MethodsRNA-sequencing of the expansion segments and the narrow segments of colon tissues isolated from children with HSCR was performed. After differentially expressed genes (DEGs) were identified using the edgeR package in R, functional and pathway enrichment analyses of DEGs were carried out using DAVID software. To further screen the key genes, protein-protein interaction (PPI) network and module analyses were conducted separately using Cytoscape software.ResultsA total of 117 DEGs were identified in the expansion segment samples, including 47 up-regulated and 70 down-regulated genes. Functional enrichment analysis suggested that FOS and DUSP1 were implicated in response to endogenous stimulus. In the PPI network analysis, FOS (degree=20), EGR1 (degree=16), ATF3 (degree=9), NOS1 (degree=8), CCL5 (degree=8), DUSP1 (degree=7), CXCL3 (degree=6), VIP (degree=6), FOSB (degree=5), and NOS2 (degree=4) had higher degrees, which could interact with other genes. In addition, two significant modules (module 1 and module 2) were identified from the PPI network.ConclusionsSeveral genes (including FOS, EGR1, ATF3, NOS1, CCL5, DUSP1, CXCL3, VIP, FOSB, and NOS2) might be involved in the development of HSCR through their effect on the nervous system.

Keywords: sequencing data; analysis; disease; key genes; rna sequencing; degree

Journal Title: World Journal of Pediatrics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.