LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Object-Based Rule Sets and Its Transferability for Building Extraction from High Resolution Satellite Imagery

Photo from wikipedia

With the advent of high spatial resolution satellite imagery, automatic and semiautomatic building extractions have turned into one of the outstanding research topics in the field of remote sensing and… Click to show full abstract

With the advent of high spatial resolution satellite imagery, automatic and semiautomatic building extractions have turned into one of the outstanding research topics in the field of remote sensing and machine vision. To this date, various algorithms have been presented for extracting the buildings from satellite images. Such methods lend their bases to diverse criteria such as radiometric, geometric, edge detection, and shadow. In this paper, a novel object based approach has been proposed for automatic and robust detections as well as extraction of the building in high spatial resolution images. To fulfill this, we simultaneously made use of both stable and variable features. While the former can be derived from inherent characteristics of the buildings, the latter is extracted using a feature analysis tool. In addition, a novel perspective has been recommended to boost the automation degree of the segmentation part in the object based analysis of remote sensing imagery. The proposed method was applied to a QuickBird imagery of an urban area in Isfahan city and the results of the quantitative evaluation demonstrated that the proposed method could yield promising results. Moreover, in another section of this study, for assessing the algorithm transferability, the rule set was implemented to a part of the WorldView image of Yazd city, proving that the proposed approach is capable of transferability in different types of case studies.

Keywords: resolution; resolution satellite; imagery; object based; transferability

Journal Title: Journal of the Indian Society of Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.