LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification

Photo from wikipedia

Abstract Different methods of using spatial information in image classification are presented. One approach is to quantify image texture to produce features for use in classifiers, and there are various… Click to show full abstract

Abstract Different methods of using spatial information in image classification are presented. One approach is to quantify image texture to produce features for use in classifiers, and there are various methods with adjustable parameters for texture quantification. The produced features are numerous and are in different discriminating image classes. Therefore, there is a need for selecting their optimum combination, or to alternatively create a set of features that abstract their class discernibility. Inspired by spectral normalized difference indices, the concept of the spatio-spectral index is introduced in this article to produce indices from a series of spatial features created from image spectral bands. In the proposed method, the produced spatio-spectral indices for each class are used as the abstract of spatial features. Along with the image spectral bands, they are used as new feature forms for supervised classification. Features with maximum and minimum values in each class were selected after production of the average vector in the feature space, and the removal of features with a small variation range. Next, non-repetitive band pairs were selected and spatio-spectral indices were produced. Using this method, the number of selected spatial features was at most twice the number of classes and was used to produce spatio-spectral indices. Use of the produced features in classification improves classification accuracy significantly (about 30% and 6% in the two test images used here) by enhancing class discrimination and decreasing computational time. This method is also explicit and direct, with no need to use iterative optimization processes.

Keywords: image; spectral indices; using spatial; spatio spectral; image classification

Journal Title: Journal of the Indian Society of Remote Sensing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.