LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of γ and γ′ phases in 2nd and 4th generation single crystal nickel-base superalloys

Photo from archive.org

A Ni based single crystal superalloy from the 2nd generation, PWA 1484, and one from the 4th generation, PWA 1497, were comparatively studied by scanning electron microscopy, energy dispersive X-ray… Click to show full abstract

A Ni based single crystal superalloy from the 2nd generation, PWA 1484, and one from the 4th generation, PWA 1497, were comparatively studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation technique in an atomic force microscope (NI-AFM) after high temperature creep deformation. During primary creep of both generations of superalloys, γ′ precipitates start to coalesce and grow directionally. Further creep deformation leads to the topological inversion and coarsening of the rafted microstructure. The NI-AFM technique was used for measurements of the hardness of the γ and γ′ phases in as-received and creep deformed samples in various conditions. The g matrix of the PWA 1497 superalloy is on average 0.8 GPa harder than that of PWA 1484 that can be explained by higher content of Re and Ru, since they partition predominantly to the matrix phase.

Keywords: 4th generation; single crystal; generation; phases 2nd; characterization phases; 2nd 4th

Journal Title: Metals and Materials International
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.