LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors

Photo by anniespratt from unsplash

Pristine and Nb2O5 nanoparticles-decorated CuO nanorods were prepared successfully by a two step process: the thermal evaporation of a Cu foil and the spin coating of NbCl5 solution on CuO… Click to show full abstract

Pristine and Nb2O5 nanoparticles-decorated CuO nanorods were prepared successfully by a two step process: the thermal evaporation of a Cu foil and the spin coating of NbCl5 solution on CuO nanorods followed by thermal annealing. X-ray diffraction was performed to examine the structure and purity of the synthesized nanoatuctures. Scanning electron microscopy was used to examine the morphology and shape of the nanostuctures. The Nb2O5 nanoparticles-decorated CuO nanorod sensor showed responses of ~217.05-862.54%, response times of ~161-199 s and recovery times of ~163-171 s toward H2 gas with concentrations in a range of 0.5 - 5% at the optimal working temperature of 300 °C. The Nb2O5 nanoparticle-decorated CuO nanorod sensor showed superior sensing performance to the pristine CuO nanorod sensor for the same H2 concentration range. The underlying mechanism for the enhanced hydrogen sensing performance of the CuO nanorods decorated with Nb2O5 nanoparticles is discussed.

Keywords: cuo; cuo nanorod; decorated cuo; nanoparticle decorated; nb2o5 nanoparticle

Journal Title: Metals and Materials International
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.