LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Role of Chromium in Dynamic Transformation of Austenite

Photo from wikipedia

The effect of Chromium (Cr) on the dynamic transformation (DT) of austenite to ferrite at temperatures up to 430 °C above Ae3 was studied in a medium-carbon low-alloy steel. Hot compression… Click to show full abstract

The effect of Chromium (Cr) on the dynamic transformation (DT) of austenite to ferrite at temperatures up to 430 °C above Ae3 was studied in a medium-carbon low-alloy steel. Hot compression tests were performed using Gleeble 3800® thermomechanical simulator followed by microstructural examinations using electron microscopy (FESEM-EBSD). Driving force calculation using austenite flow stress and ferrite yield stress on an inverse absolute temperature graph indicated that Cr increases the driving force for the transformation of austenite to ferrite; however, when the influence of stress and thermodynamic analysis are taken into account, it was observed that Cr increases the barrier energy and therefore, emerges as a barrier to the transformation. An analysis, based on lattice and pipe diffusion theories is presented that quantifies the role of stress on the diffusivity of Cr and is compared with other the main alloying elements such as C, Si and Mn and its impact, positive or negative, on the DT barrier energy. Finally, a comparison is made on the differential effects of temperature and stress on the initiation of DT in medium-carbon low-alloy steels.

Keywords: transformation; chromium dynamic; stress; dynamic transformation; transformation austenite

Journal Title: Metals and Materials International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.