LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy

Photo from wikipedia

The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti–19Al–22Mo alloy. The samples were deformed in the temperature range from 1100 to… Click to show full abstract

The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti–19Al–22Mo alloy. The samples were deformed in the temperature range from 1100 to 1250 °C with an interval of 50 °C, strain rate ranging from 0.01 to 1 s−1 and the height reduction of 50% using Gleeble-3800 thermal–mechanical simulator. By using this experimental data an artificial neural network (ANN) model was developed and evaluated with unseen data. Further, the developed ANN model was used to predict flow stress correction from adiabatic heating at finer intervals of strain rates and temperatures. The predicted isothermal flow stress values were utilized to construct processing maps for Ti–19Al–22Mo alloy at true strain of 0.4 and 0.6. The maximum efficiency was noticed at 1100 °C with the strain rate of 0.01 s−1 associated with dynamic recrystallization and dynamic recovery. The deformation conditions of the instability domains in processing map showed wedge cracking and flow localization. Using the processing maps safe working parameters for hot deformation of Ti–19Al–22Mo alloy was identified.

Keywords: 22mo alloy; hot deformation; 19al 22mo; processing maps; deformation behavior

Journal Title: Metals and Materials International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.