LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Sn Micro-alloying on Recrystallization Nucleation and Growth Processes of Ferritic Stainless Steels

Photo from wikipedia

We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and… Click to show full abstract

We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740–880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.

Keywords: recrystallization; micro alloying; nucleation; ferritic stainless; stainless steels; growth

Journal Title: Metals and Materials International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.