LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Aging Isothermal Time on the Microstructure and Room-Temperature Impact Toughness of Fe–24.8Mn–7.3Al–1.2C Austenitic Steel with κ-Carbides Precipitation

Photo from wikipedia

The microstructure and impact toughness of the as-cast Fe–24.8Mn–7.3Al–1.2C austenitic steel after solution treatment and subsequent aging treatment were investigated in the present work. Research on the κ-carbides precipitation behavior… Click to show full abstract

The microstructure and impact toughness of the as-cast Fe–24.8Mn–7.3Al–1.2C austenitic steel after solution treatment and subsequent aging treatment were investigated in the present work. Research on the κ-carbides precipitation behavior was carried out by transmission electron microscope. The results show that nano-sized coherent κ-carbides were obtained in the as-solutionized steel after aging treatment, which produced precipitation hardening. After being aging treated at 550 °C for 1 h, the steel with regular hexagonal grain structure exhibited a good combination of yield strength (~ 574 MPa) and room-temperature impact toughness (~ 168 J). In the present steel, the typical cube-on-cube orientation relationship between austenite and κ-carbides was observed. However, due to the long aging isothermal time and high C content, the coarse intergranular κ′-carbide was formed and grew along the austenite grain boundary, which caused this orientation relationship to be destroyed and a dramatical increase of the coherency strain energy at grain boundary. Furthermore, serious embrittlement of grain boundaries caused that cleavage cracks trend to propagate along the grain boundaries. Accordingly, the room-temperature impact toughness decreased sharply. After aging isothermal time prolonging to 13 h, the Charpy V-notch impact toughness was only ~ 5 J and fracture mode turned to fully brittle fracture accompanied with flat facets, shear cracks and well-developed secondary crack.

Keywords: temperature impact; impact; room temperature; impact toughness; steel

Journal Title: Metals and Materials International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.