LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of the Ultrasound Treatment on Reaction Rates in the RH Processor Water Model System

Photo from wikipedia

Ruhrstahl–Heraeus (RH) processor is widely applied to the refining process to produce steel with very low carbon contents. In this study, to investigate the effect of ultrasound treatment on RH… Click to show full abstract

Ruhrstahl–Heraeus (RH) processor is widely applied to the refining process to produce steel with very low carbon contents. In this study, to investigate the effect of ultrasound treatment on RH decarburization process, we have developed two kinds of the water models simulated the RH process and study the removal rate of dissolved oxygen. The one is the RH water model of 1/8 size of actual RH degasser simulated the late-stage of the RH process when surface reaction and plume reaction mainly occur. Through this model, it is found that the ultrasound treatment accelerates dissolved oxygen removal reaction and this tendency is maintained even at low concentrations. Also, the results show that there is a difference in the degassing efficiency depending on the frequencies and the positions of the ultrasonic transducer. Also, to simulate the Early-stage Reaction of the process including the inner-site reaction which is difficult to investigate through the RH water model, the other water model has been developed (the RH-ER water model). This model shows that the ultrasound treatment facilitates the early-stage reaction including inner-site reaction, like the RH water model. These results show that the addition of the ultrasound treatment can accelerate decarburization reaction during RH process compared to conventional process.

Keywords: ultrasound treatment; model; water model; process; reaction

Journal Title: Metals and Materials International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.