LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology Evolution of Mn5Si3 Phase and Effect of Mn content on Wear Resistance of Special Brass

Photo from wikipedia

There is a surge of interests in developing newer materials with special properties and many areas are being explored by several groups. We wish to report our findings on the… Click to show full abstract

There is a surge of interests in developing newer materials with special properties and many areas are being explored by several groups. We wish to report our findings on the effect of Mn content on the microstructure and tribological behavior of special brass. With the increase of Mn content in the range of 4–10 wt%, the hardness and wear resistance of the special brass were all changed, and the adhesion with abrasion is form the friction behavior, mainly for all brasses. It was observed that the matrix grain size was the smallest, and the hard phase was precipitated the most when the Mn quantity attained the 8 wt% mark. During this period, the brass has the highest hardness and best wear resistance, which results from the grain refinement and load transferring effect of precipitates. It was characterized by SEM, EDS, XRD, TEM, etc., and the results confirmed that the precipitates were Mn5Si3 and its structure was hollow hexagonal prism. The morphology evolution of the hard phase and its growth mechanism have been investigated, analyzed and simulated the nucleation and growth process of the Mn5Si3 phase based on crystallography. The outcomes also showed that the presence of defects on the {0001} faces was the crucial factor for one-dimensional elongated structure of Mn5Si3 phase.

Keywords: phase; special brass; wear resistance; brass; effect; mn5si3 phase

Journal Title: Metals and Materials International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.