LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy

Photo from wikipedia

Abstract We investigated the effects of hydrogen and temperature on hydrogen embrittlement (HE) of cold-rolled equimolar CoCrFeMnNi high-entropy alloy (HEA). The HE exhibited intergranular fracture in this HEA at 298… Click to show full abstract

Abstract We investigated the effects of hydrogen and temperature on hydrogen embrittlement (HE) of cold-rolled equimolar CoCrFeMnNi high-entropy alloy (HEA). The HE exhibited intergranular fracture in this HEA at 298 and 177 K. At 177 K, more twins formed than at 298 K, and this acted as a hydrogen-diffusion path. During deformation, local stress was concentrated at the triple junction consisting of grain and twin boundaries. Hydrogen diffused predominantly along the boundary and encountered stress-concentration regions. Cracks initiated and propagated predominantly through the grain/twin boundaries by hydrogen diffusion at 298 and 177 K. Therefore, HE occurred at 298 and 177 K. At 77 K, hydrogen was distributed throughout the specimen as twin formation was more active. The cryogenic temperature of 77 K caused the hydrogen to become trapped and thus not diffuse into the stress-concentration region. Thus, there was no significant HE at 77 K. Graphic abstract

Keywords: temperature; hydrogen; equimolar cocrfemnni; temperature hydrogen; hydrogen embrittlement; hydrogen temperature

Journal Title: Metals and Materials International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.