The design of a flight control system for an under-actuated quadrotor aircraft in presence of parametric uncertainties and external disturbance is quite challenging. In this study, we propose an adaptive… Click to show full abstract
The design of a flight control system for an under-actuated quadrotor aircraft in presence of parametric uncertainties and external disturbance is quite challenging. In this study, we propose an adaptive trajectory tracking control base on sliding mode approach, an adaptive command filtered backstepping technique to stabilize the attitude of the quadrotor and using online estimators to estimate unknown aerodynamic parameters and external disturbances. First of all, the mathematical model of a quadrotor unmanned aerial vehicle (UAV) is presented. The adaptive tracking trajectory position and attitude control scheme are then formulated and the perturbations in quadrotor system are compensated by employing special Lyapunov functions. Simulation results are given to demonstrate the validity and effectiveness of the proposed algorithm on a quadrotor model under different conditions.
               
Click one of the above tabs to view related content.