LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Review: Surface Texturing Methods for Solar Cell Efficiency Enhancement

Photo from wikipedia

Demand for renewable energy continually increases due to environmental pollution and resource depletion caused by the increased use of fossil fuels. Among the various renewable energies, the solar cell developed… Click to show full abstract

Demand for renewable energy continually increases due to environmental pollution and resource depletion caused by the increased use of fossil fuels. Among the various renewable energies, the solar cell developed by numerous researchers has been widely used because of its advantages, including ease of use and low maintenance cost. However, problems, such as efficiency, waste treatment, and light pollution, also raise concerns. The largest drawback of solar cell has been the low energy conversion efficiency arising from optical loss. To improve solar cell efficiency, numerous studies have been conducted, and thus, various solutions were developed in recent decades. In this review, the principle and application of surface texturization methods utilizing micro/nano scale structure on the surfaces of solar cells are elaborated in detail. These texturized surfaces with unique optical properties can be implemented as anti-reflective or light-trapping interfaces to reduce optical loss and thus enhance the efficiency of solar cells. Optical properties of texturized surfaces and applied examples are introduced in this review.

Keywords: review surface; cell; solar cell; cell efficiency

Journal Title: International Journal of Precision Engineering and Manufacturing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.