LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro assembly of Haemophilus influenzae adhesin transmembrane domain and studies on the electrostatic repulsion at the interface

Photo from wikipedia

Haemophilus influenzae adhesin (Hia) belongs to the trimeric autotransporter family, and it mediates the adherence of these bacteria to the epithelial cells of host organisms. Hia is composed of the… Click to show full abstract

Haemophilus influenzae adhesin (Hia) belongs to the trimeric autotransporter family, and it mediates the adherence of these bacteria to the epithelial cells of host organisms. Hia is composed of the passenger domain, which is a virulence factor, and the translocator domain, which anchors the passenger domain into the outer membrane. The Hia transmembrane domain forms a transmembrane β-barrel of 12 β-strands, four of which are provided from each subunit. The β-barrel has a pore that is traversed by three α-helices, one of which is provided from each subunit. This domain has a unique arginine arrangement inside the β-barrel. The side chains of the arginine residues protrude from the β-strands of three subunits toward the center of the barrel and are close to each other. Mutation of this arginine residue revealed the importance of the electrostatic repulsion between the three arginines. Electrostatic repulsion is considered to prevent misfolding and/or misassembly. The arginine clusters at the interface were found in several proteins and might generally play an important role in the assembly of the oligomer.

Keywords: haemophilus influenzae; transmembrane domain; influenzae adhesin; electrostatic repulsion; domain

Journal Title: Biophysical Reviews
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.