LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visual servoing based on efficient histogram information

Photo by alterego_swiss from unsplash

The robustness of a visual servoing task depends mainly on the efficiency of visual selections captured from a sensor at each robot’s position. A task function could be described as… Click to show full abstract

The robustness of a visual servoing task depends mainly on the efficiency of visual selections captured from a sensor at each robot’s position. A task function could be described as a regulation of the values sent via the control law to the camera velocities. In this paper we propose a new approach that does not depend on matching and tracking results. Thus, we replaced the classical minimization cost by a new function based on probability distributions and Bhattacharyya distance. To guarantee more robustness, the information related to the observed images was expressed using a combination of orientation selections. The new visual selections are computed by referring to the disposition of Histograms of Oriented Gradients (HOG) bins. For each bin we assign a random variable representing gradient vectors in a particular direction. The new entries will not be used to establish equations of visual motion but they will be directly inserted into the control loop. A new formulation of the interaction matrix has been presented according to the optical flow constraint and using an interpolation function which leads to a more efficient control behaviour and to more positioning accuracy. Experiments demonstrate the robustness of the proposed approach with respect to varying work space conditions.

Keywords: efficient histogram; information; servoing based; control; based efficient; visual servoing

Journal Title: International Journal of Control, Automation and Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.