LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model-free Adaptive Dynamic Programming Based Near-optimal Decentralized Tracking Control of Reconfigurable Manipulators

Photo by markusspiske from unsplash

In this paper, a model-free near-optimal decentralized tracking control (DTC) scheme is developed for reconfigurable manipulators via adaptive dynamic programming algorithm. The proposed controller can be divided into two parts,… Click to show full abstract

In this paper, a model-free near-optimal decentralized tracking control (DTC) scheme is developed for reconfigurable manipulators via adaptive dynamic programming algorithm. The proposed controller can be divided into two parts, namely local desired controller and local tracking error controller. In order to remove the normboundedness assumption of interconnections, desired states of coupled subsystems are employed to substitute their actual states. Using the local input/output data, the unknown subsystem dynamics of reconfigurable manipulators can be identified by constructing local neural network (NN) identifiers. With the help of the identified dynamics, the local desired control can be derived directly with corresponding desired states. Then, for tracking error subsystems, the local tracking error control is investigated by the approximate improved local cost function via local critic NN and the identified input gain matrix. To overcome the overall error caused by the substitution, identification and critic NN approximation, a robust compensation is added to construct the improved local cost function that reflects the overall error, regulation and control simultaneously. Therefore, the closed-loop tracking system can be guaranteed to be asymptotically stable via Lyapunov stability theorem. Two 2-degree of freedom reconfigurable manipulators with different configurations are employed to demonstrate the effectiveness of the proposed modelfree near-optimal DTC scheme.

Keywords: near optimal; error; control; optimal decentralized; reconfigurable manipulators; model free

Journal Title: International Journal of Control, Automation and Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.