An adaptive actuator failure compensation scheme is proposed for attitude tracking control of spacecraft with unknown disturbances and uncertain actuator failures. A new feature of this adaptive control scheme is… Click to show full abstract
An adaptive actuator failure compensation scheme is proposed for attitude tracking control of spacecraft with unknown disturbances and uncertain actuator failures. A new feature of this adaptive control scheme is the adaptation of the failure pattern parameter estimates, as well as the failure signal parameter estimates, for direct adaptive actuator failure compensation. Based on an adaptive backstepping control design, the estimates of the disturbance parameters are used to solve the disturbance rejection problem. Without the requirement of additional fault detection mechanism, the switching function is designed to automatically locate and turn off the unknown faulty actuators by observing a control performance index. The asymptotic stability of the system output in the presence of actuator failures is rigidly proved through standard Lyapunov approach, while the other signals of the closed-loop system are guaranteed to be bounded. Simulation results verify the desired adaptive actuator failure compensation performance.
               
Click one of the above tabs to view related content.