LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Semi-Supervised Convolutional Neural Network Method for Synthetic Aperture Radar Image Recognition

Photo by ann10 from unsplash

Synthetic aperture radar (SAR) automatic target recognition (ATR) technology is one of the research hotspots in the field of image cognitive learning. Inspired by the human cognitive process, experts have… Click to show full abstract

Synthetic aperture radar (SAR) automatic target recognition (ATR) technology is one of the research hotspots in the field of image cognitive learning. Inspired by the human cognitive process, experts have designed convolutional neural network (CNN)-based SAR ATR methods. However, the performance of CNN significantly deteriorates when the labeled samples are insufficient. To effectively utilize the unlabeled samples, we present a novel semi-supervised CNN method. In the training process of our method, the information contained in the unlabeled samples is integrated into the loss function of CNN. Specifically, we first utilize CNN to obtain the class probabilities of the unlabeled samples. Thresholding processing is performed to optimize the class probabilities so that the reliability of the unlabeled samples is improved. Afterward, the optimized class probabilities are used to calculate the scatter matrices of the linear discriminant analysis (LDA) method. Finally, the loss function of CNN is modified by the scatter matrices. We choose ten types of targets from the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset. The experimental results show that the recognition accuracy of our method is significantly higher than other semi-supervised methods. It has been proved that our method can effectively improve the SAR ATR accuracy when labeled samples are insufficient.

Keywords: semi supervised; method; recognition; synthetic aperture; cnn

Journal Title: Cognitive Computation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.