Latest large spacecraft and/or agility requirements have led to configurations of five or more reaction wheels. To avoid (1) handling a significant amount of pre-stored parameters on board and (2)… Click to show full abstract
Latest large spacecraft and/or agility requirements have led to configurations of five or more reaction wheels. To avoid (1) handling a significant amount of pre-stored parameters on board and (2) intervening by ground (classical approach) to recover single- and multiple-wheel failures, the orthogonal null space basis must be robustly computed on board. Two deterministic methods are presented in this paper: (1) via virtual torque commands using L∞ and L2 commanding, (2) via generalized inverse. Furthermore, a cascading null space control approach that autonomously respects predefined wheel momentum operating bands is introduced. The presented work is dedicated to the demand of high on-board autonomy driven by more and more customers requiring just a working spacecraft with minimum interventions by ground. The presented solutions are already part of the Airbus high-power satellite avionics system Astrobus AS400 for current and future missions such as MetOp-SG. Furthermore, the presented functionalities are essential towards on-board real-time spacecraft reconfiguration which is; however, beyond the scope of this paper.
               
Click one of the above tabs to view related content.