LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China

Photo by umbriferous from unsplash

Two Permian-Triassic boundary (PTB) sections (Pojue and Dala) are well exposed in an isolated carbonate platform (Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections… Click to show full abstract

Two Permian-Triassic boundary (PTB) sections (Pojue and Dala) are well exposed in an isolated carbonate platform (Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10B (a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed: an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups (bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.

Keywords: napo platform; permian triassic; south china; ptb; platform; carbon isotopes

Journal Title: Journal of Earth Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.