LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Maximum Number of Limit Cycles for Generalized Kukles Polynomial Differential Systems

Photo by kellysikkema from unsplash

We study the maximum number of limit cycles of the polynomial differential systems of the form $$\begin{aligned} \dot{x}=-y+l(x), \,\dot{y}=x-f(x)-g(x)y-h(x)y^{2}-d_{0}y^{3}, \end{aligned}$$x˙=-y+l(x),y˙=x-f(x)-g(x)y-h(x)y2-d0y3,where $$l(x)=\varepsilon l^{1}(x)+\varepsilon ^{2}l^{2}(x),$$l(x)=εl1(x)+ε2l2(x),$$f(x)=\varepsilon f^{1}(x)+\varepsilon ^{2}f^{2}(x),$$f(x)=εf1(x)+ε2f2(x),$$g(x)=\varepsilon g^{1}(x)+\varepsilon ^{2}g^{2}(x),$$g(x)=εg1(x)+ε2g2(x),$$h(x)=\varepsilon h^{1}(x)+\varepsilon ^{2}h^{2}(x)$$h(x)=εh1(x)+ε2h2(x) and… Click to show full abstract

We study the maximum number of limit cycles of the polynomial differential systems of the form $$\begin{aligned} \dot{x}=-y+l(x), \,\dot{y}=x-f(x)-g(x)y-h(x)y^{2}-d_{0}y^{3}, \end{aligned}$$x˙=-y+l(x),y˙=x-f(x)-g(x)y-h(x)y2-d0y3,where $$l(x)=\varepsilon l^{1}(x)+\varepsilon ^{2}l^{2}(x),$$l(x)=εl1(x)+ε2l2(x),$$f(x)=\varepsilon f^{1}(x)+\varepsilon ^{2}f^{2}(x),$$f(x)=εf1(x)+ε2f2(x),$$g(x)=\varepsilon g^{1}(x)+\varepsilon ^{2}g^{2}(x),$$g(x)=εg1(x)+ε2g2(x),$$h(x)=\varepsilon h^{1}(x)+\varepsilon ^{2}h^{2}(x)$$h(x)=εh1(x)+ε2h2(x) and $$d_{0}=\varepsilon d_{0}^{1}+\varepsilon ^{2}d_{0}^{2}$$d0=εd01+ε2d02 where $$l^{k}(x),$$lk(x),$$f^{k}(x),$$fk(x),$$g^{k}(x)$$gk(x) and $$h^{k}(x)$$hk(x) have degree m,  $$n_{1},$$n1,$$n_{2}$$n2 and $$n_{3}$$n3 respectively, $$d_{0}^{k}\ne 0$$d0k≠0 is a real number for each $$k=1,2,$$k=1,2, and $$\varepsilon $$ε is a small parameter. We provide an upper bound of the maximum number of limit cycles that the above system can have bifurcating from the periodic orbits of the linear centre $$\dot{x}=-y,\, \dot{y}=x$$x˙=-y,y˙=x using the averaging theory of first and second order.

Keywords: number; maximum number; number limit; limit cycles; varepsilon varepsilon; varepsilon

Journal Title: Differential Equations and Dynamical Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.