LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lie Group Analysis of Nanofluid Slip Flow with Stefan Blowing Effect via Modified Buongiorno’s Model: Entropy Generation Analysis

Photo from wikipedia

This article presents a detailed theoretical and computational analysis of alumina and titania-water nanofluid flow from a horizontal stretching sheet. At the boundary of the sheet (wall), velocity slip, thermal… Click to show full abstract

This article presents a detailed theoretical and computational analysis of alumina and titania-water nanofluid flow from a horizontal stretching sheet. At the boundary of the sheet (wall), velocity slip, thermal slip and Stefan blowing effects are considered. The Pak-Cho viscosity and thermal conductivity model is employed together with the non-homogeneous Buongiorno nanofluid model. The equations for mass, momentum, energy and nanoparticle species conservation are transformed via Lie-group transformations into a dimensionless system. The partial differential boundary value problem is therefore rendered into nonlinear ordinary differential form. With appropriate boundary conditions, the emerging normalized equations are solved with the semi-numerical homotopy analysis method (HAM). To consider entropy generation affects a second law thermodynamic analysis is also carried out. The impact of some physical parameters on the skin friction, Nusselt number, velocity, temperature and entropy generation number (EGM) are represented graphically. This analysis shows that diffusion parameter is a key factor to retards the friction and rate of heat transfer at the surface. Further, temperature of fluid decreases for the higher value of thermal slip parameter. In addition, EGM enhances with nanoparticles ambient concentration and Reynolds number. A numerical validation of HAM results is also included. The computations are relevant to thermodynamic optimization of nano-material processing operations.

Keywords: slip; stefan blowing; entropy generation; model; analysis

Journal Title: Differential Equations and Dynamical Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.