LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials

Photo by kellysikkema from unsplash

Abstract(MnFe)2(P, Si)-type compounds are, to date, one of the best candidates for magnetic refrigeration and energy conversion applications due to the combination of giant magnetocaloric effect (MCE), tunable working temperature… Click to show full abstract

Abstract(MnFe)2(P, Si)-type compounds are, to date, one of the best candidates for magnetic refrigeration and energy conversion applications due to the combination of giant magnetocaloric effect (MCE), tunable working temperature range and low material cost. The giant MCE in the (Mn, Fe)2(P, Si)-type compounds originates from strong magnetoelastic coupling, where the lattice degrees of freedom and spin degrees of freedom are efficiently coupled. The tunability of the phase transition, in terms of the critical temperature and the character of the phase transition, is essentially attributed to the changes in the magnetoelastic coupling in the (Mn, Fe)2(P, Si)-type compounds. In this review, not only the fundamentals of the magnetoelastic coupling but also the related practical aspects such as magnetocaloric performance, hysteresis issue and mechanical stability are discussed for the (Mn, Fe)2(P, Si)-type compounds. Additionally, some future fundamental studies on the MCE as well as possible ways of solving the hysteresis and fracture issues are proposed.

Keywords: coupling type; overview magnetoelastic; magnetoelastic coupling; type compounds; type

Journal Title: Rare Metals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.