In this work, nickel/T-Nb2O5 nanoparticles encapsulated in mesoporous carbon nanofibers (denoted as Ni/T-Nb2O5@CNFs) are successfully prepared through a simple electrospinning route and succedent heating treatment. The presence of Ni in… Click to show full abstract
In this work, nickel/T-Nb2O5 nanoparticles encapsulated in mesoporous carbon nanofibers (denoted as Ni/T-Nb2O5@CNFs) are successfully prepared through a simple electrospinning route and succedent heating treatment. The presence of Ni in carbon nanofibers is beneficial for enhancing the electronic conductivity and the initial Coulombic efficiency. Ni/T-Nb2O5 nanoparticles are homogeneously incorporated in carbon nanofibers to form a nanocomposite system, which provides effective buffering during the lithiation/delithiation process for cycling stability. The Ni/T-Nb2O5@CNFs show high surface area (26.321 m2·g−1) and mesoporous microstructure, resulting in higher capacity and excellent rate performance. The Ni/T-Nb2O5@CNFs exhibit a remarkable capacity of 437 mAh·g−1 at a current density of 0.5 A·g−1 after 230 cycles and a capacity of 173 mAh·g−1 at a current density up to 10.0 A·g−1 after 1400 cycles. This work indicates that nickel/T-Nb2O5 nanoparticles encapsulated in carbon nanofibers can be a promising candidate for anode material in high-power LIBs.
               
Click one of the above tabs to view related content.