TiO2 nanotube arrays, growing on three-dimensional (3D) porous Ti membrane, were synthesized using a facile nonsolvent-induced phase separation and anodization process. The length of those three-dimensional nanotube arrays could be… Click to show full abstract
TiO2 nanotube arrays, growing on three-dimensional (3D) porous Ti membrane, were synthesized using a facile nonsolvent-induced phase separation and anodization process. The length of those three-dimensional nanotube arrays could be tuned by prolonging the anodizing time. When the anodizing time is 8 h, the three-dimensional TiO2 nanotube arrays/porous Ti electrode exhibits well cycling stability and ultra-high specific capacity, which is used in lithium-ion batteries, attributed to the high utilization rate of the substrate and the high growth intensity of the active materials. Three-dimensional TiO2 nanotube arrays/porous Ti electrode, at 100 μA·cm−2 with 8 h anodizing time, shows a typical discharge plateau at 1.78 V and exhibits the specific capacity with 2126.7 μAh·cm−2. The novel nanotube arrays@3D porous architecture effectively shortens the electron/ion transmission path, which could pave way for optimizing the design of high-performance anode materials for next-generation energy storage system.
               
Click one of the above tabs to view related content.