LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dietary Supplementation of Probiotic Bacillus subtilis Affects Antioxidant Defenses and Immune Response in Grass Carp Under Aeromonas hydrophila Challenge

Photo by papaioannou_kostas from unsplash

This study investigated whether Bacillus subtilis can provide protection for grass carp against oxidative stress damage induced by Aeromonas hydrophila. A total of 240 healthy grass carp (Ctenopharyngodon idellus) (average… Click to show full abstract

This study investigated whether Bacillus subtilis can provide protection for grass carp against oxidative stress damage induced by Aeromonas hydrophila. A total of 240 healthy grass carp (Ctenopharyngodon idellus) (average weight of 71.42 ± 4.36g) were randomly divided into four groups with three replicates: control group, A. hydrophila group, B. subtilis + A. hydrophila group, and A. hydrophila + B. subtilis group. After challenge with A. hydrophila, the lipid oxidative damage, antioxidant defenses, and the gene expression of inflammatory cytokines of the grass carp were investigated. Our results showed that A. hydrophila caused lipid oxidative damage, led to significant decreases in antioxidant defenses, and induced inflammatory responses of grass carp. However, the grass carp group fed the probiotic B. subtilis diet for 42 days before the challenge and the group fed the probiotic B. subtilis diet immediately after the challenge both showed (i) a reduced level of oxidative stress with a decrease in the level of MDA; (ii) an increase in antioxidant defenses, including an increase in total antioxidant capacity (T-AOC), increased activities of SOD and CAT, increased levels of GSH, and upregulated gene expression of antioxidant enzymes (SOD, CAT, and Gpx); and (iii) an improved immune response with the level of antiinflammatory cytokines IL-10 messenger RNA (mRNA) upregulated and the levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 mRNA downregulated. Based on this study, B. subtilis can provide effective protection of fish against oxidative stress damage induced by A. hydrophila infection.

Keywords: antioxidant defenses; group; grass carp; hydrophila; carp

Journal Title: Probiotics and Antimicrobial Proteins
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.