Probiotic as a preventive medicine is emerging as an indispensable tool in addressing the foodborne infections or gastrointestinal disorders. The present study was sought to determine the in vitro prophylactic… Click to show full abstract
Probiotic as a preventive medicine is emerging as an indispensable tool in addressing the foodborne infections or gastrointestinal disorders. The present study was sought to determine the in vitro prophylactic potential of probiotic Lactobacillus rhamnosus (LR: MTCC-5897) against Escherichia coli (ATCC 14948) induced impairment in intestinal barrier function using Caco-2 cells. Intestinal cells exposed to E. coli demonstrated significantly higher phenol red flux (p < 0.05) and concomitantly decreased TEER (0.69 ± 0.01) in contrast to control or L. rhamnosus (109 cfu/mL)-treated cells. However, E. coli-induced barrier hyperpermeability was restored to significant extents (p < 0.01) when E. coli were excluded, competed or displaced by probiotic LR. Similarly, exposure of Caco-2 cells to E. coli reduced the mRNA expression of key tight junction genes, viz. Zo-1, Claudin-1, Occludin and Cingulin which however were restored significantly (p < 0.05) with L. rhamnosus treatment during exclusion or competition than displacement assays. The protective behaviour of probiotic LR against E. coli can also be observed in immunofluorescent and electron micrograph where intact cellular morphology along with preserved distribution and localisation of key integrity proteins can be found in LR-treated cells in contrast to distorted and disorganised distribution observed with E. coli exposure. In conclusion, L. rhamnosus inhibited and re-established E. coli-impaired intestinal barrier function by improving the expression and distribution of key junction protein and hence could serve an essential food additive to address the various health complications especially those associated with gastrointestinal tract.
               
Click one of the above tabs to view related content.