LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Factor analysis on the purity of magnesium titanate directly prepared from seashore titanomagnetite concentrate through direct reduction

Photo from wikipedia

Magnesium titanate was prepared directly through external coal reduction of seashore titanomagnetite concentrate and magnesium oxide (MgO). The effects of roasting temperature and the type and dosage of reductants on… Click to show full abstract

Magnesium titanate was prepared directly through external coal reduction of seashore titanomagnetite concentrate and magnesium oxide (MgO). The effects of roasting temperature and the type and dosage of reductants on the purity of generated magnesium titanate particles were systematically investigated. Scanning electron microscopy and energy-dispersive spectroscopy analyses were performed to characterize the magnesium titanate particles and observe their purity under different conditions. Results showed that the roasting temperature remarkably influenced the purity of magnesium titanate. At 1200, 1300, and 1400°C, some magnesium ferrite and magnesium aluminate spinel were dissolved in magnesium titanate. However, as the roasting temperature increased to 1500°C, relatively pure magnesium titanate particles were generated because no magnesium ferrite was dissolved in them. The type and dosage of the reductants also remarkably affected the purity of magnesium titanate. The amount of fine metallic iron disseminated in the magnesium titanate particles obviously decreased when lignite was used as a reductant at a dosage of 70wt%. Thus, high-purity magnesium titanate particles formed. At a roasting temperature of 1500°C and with 70wt% lignite, the magnesium titanate product with a yield of 30.63% and an iron content of 3.01wt% was obtained through magnetic separation.

Keywords: magnesium titanate; magnesium; purity magnesium; titanate particles

Journal Title: International Journal of Minerals, Metallurgy and Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.