LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding

Photo from wikipedia

Stellite-21/WC nanopowders were deposited on Inconel through vibration-assisted laser cladding with different laser parameters. Optical and scanning electron microscopy, hardness measurements, and wear characterizations were employed to understand the microstructural… Click to show full abstract

Stellite-21/WC nanopowders were deposited on Inconel through vibration-assisted laser cladding with different laser parameters. Optical and scanning electron microscopy, hardness measurements, and wear characterizations were employed to understand the microstructural and mechanical behaviors of the nanocomposites. Results showed that varying the cooling rate exerted remarkable effects on the microstructure of the as-cladded composites. Moreover, increasing the laser power from 150 W to 250 W increased the heat input and the dilutions. Dilution was affected by the scanning rate and powder feeding rate at a high laser power of 250 W. When WC nanoparticles were added as reinforcement, the dilution magnitude intensified while the hardness value increased from HV 350 to HV 700. The wear characterizations indicated that the composites containing 3wt% WC nanoparticles possessed the highest wear resistance.

Keywords: assisted laser; vibration assisted; enhanced microstructural; microstructural mechanical; laser cladding

Journal Title: International Journal of Minerals, Metallurgy and Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.