LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels

Photo from wikipedia

A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions. Fatigue… Click to show full abstract

A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions. Fatigue mechanisms were also analyzed accordingly. The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix. For the inclusions, which are tightly bonded with the steel matrix, when the Young’s modulus is larger than that of the steel matrix, the stress will concentrate inside the inclusion; otherwise, the stress will concentrate in the steel matrix. If voids exist on the interface between inclusions and the steel matrix, their effects on the fatigue process differ with their positions relative to the inclusions. The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration. The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix.

Keywords: steel matrix; inclusion; depth analysis; analysis fatigue; steel

Journal Title: International Journal of Minerals, Metallurgy and Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.