LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reciprocating sliding wear properties of sintered Al-B4C composites

Photo by markusspiske from unsplash

The fabrication of boron carbide reinforced aluminum matrix composites (Al-B4C) with various contents of B4C (1wt%, 6wt%, 15wt%, and 30wt%) was performed by powder metallurgy, and the influence of the… Click to show full abstract

The fabrication of boron carbide reinforced aluminum matrix composites (Al-B4C) with various contents of B4C (1wt%, 6wt%, 15wt%, and 30wt%) was performed by powder metallurgy, and the influence of the content of B4C on their mechanical and tribological behavior was examined. The Al-30B4C composites recorded the highest density (∼2.54 g/cm3), lowest porosity (4%), maximum Vickers hardness (HV ∼75), lowest weight loss (0.4 mg), and lowest specific wear rate (0.00042 mm3/(N·m)) under a load of 7 N, with an enhancement of 167% in hardness, a decrease of 75.8% in weight loss, and a decrease of 76.7% in the specific wear rate compared with pure aluminum. In addition, the scanning electron microscope images of the worn surface revealed that the Al-B4C composite has the narrowest wear groove of 0.85 mm at a load of 7 N, and the main wear mechanism was observed as an abrasive wear mechanism. According to the friction analysis, the coefficient of friction between surfaces increased with increasing boron carbide content and with decreasing applied load. In conclusion, B4C is an effective reinforcement material in terms of tribological and mechanical performance of the Al-B4C composites.

Keywords: sliding wear; reciprocating sliding; b4c composites; wear properties; metallurgy; b4c

Journal Title: International Journal of Minerals, Metallurgy and Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.