LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson’s Disease

Photo from wikipedia

The present investigation was an attempt to study the effect of low molecular weight sulfated chitosan (LMWSC) on in vitro rotenone model of Parkinson’s disease (PD) by evaluating cell viability,… Click to show full abstract

The present investigation was an attempt to study the effect of low molecular weight sulfated chitosan (LMWSC) on in vitro rotenone model of Parkinson’s disease (PD) by evaluating cell viability, oxidative stress, mitochondrial membrane potential, DNA fragmentation, and apoptosis. Incubation of SH-SY5Y cells with 100 nm rotenone resulted in neuronal cell death, redox imbalanced mitochondrial dysfunction, DNA fragmentation, condensation, and apoptotic cellular morphology. Rotenone exposure enhanced the expression of preapoptotic (cytochrome C (cyto c), caspase-3, -8, -9, and Bax) and down-regulated the expression of anti-apoptotic (Bcl-2) markers. Reduction of the intracellular reactive oxygen species (ROS) levels ensued due to pretreatment of LMWSC along with consequent normalization of antioxidant enzymes, mitigation of rotenone induced mitochondrial dysfunction and apoptosis. Our current findings suggested that LMWSC exhibit the pronounced neuroprotective effects, which could be due to its antioxidant, mitochondrial protection, and anti-apoptotic properties. We thus conclude that LMWSC could be developed as a novel therapeutic molecule for the benefit of reducing the consequences of PD. However, further extensive preclinical and clinical studies are warranted.

Keywords: low molecular; rotenone; weight sulfated; molecular weight; sulfated chitosan; parkinson disease

Journal Title: Neurotoxicity Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.