LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear propagation of ion-acoustic waves in self-gravitating dusty plasma consisting of non-isothermal two-temperature electrons

Photo by jawis from unsplash

Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been… Click to show full abstract

Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg–deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.

Keywords: propagation ion; ion acoustic; acoustic waves; ion; dusty plasma; nonlinear propagation

Journal Title: Indian Journal of Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.