LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced photocatalytic activity and enormous dielectricity of α-Fe2O3/reduced graphene oxide nanocomposites

Nanocomposites of single-phase iron oxide (α-Fe2O3) and reduced graphene oxide (rGO) with different volume fractions have been prepared by chemical route. Structural, morphological and spectroscopic characterizations have been performed by… Click to show full abstract

Nanocomposites of single-phase iron oxide (α-Fe2O3) and reduced graphene oxide (rGO) with different volume fractions have been prepared by chemical route. Structural, morphological and spectroscopic characterizations have been performed by XRD, FESEM, TEM, XPS and Raman studies. Photocatalytic activity of these composites has been investigated by the degradation of methylene blue dye under visible light irradiation. The activity is found to depend on the percentage of volume fraction (vf) of rGO in the composite. At $$ v_{\text{f}} = 10.3, $$vf=10.3, the photocatalytic activity becomes maximum and the degree of degradation of MB is found to be ~ eight times to that of pure α-Fe2O3. The enhanced photocatalytic activity may be attributed to the prolonged lifetime of electron–hole pair produced in α-Fe2O3. The stability and reusability of photocatalyst during photocatalytic reaction, which is a crucial factor for the practical applications, is also verified. At this particular volume fraction of rGO, i.e., vf = 10.3, the nanocomposite exhibits huge dielectric constant ~ 2950 times to that of pure α-Fe2O3 along with moderate dielectric loss enabling it a potential candidate for charge storage device.

Keywords: graphene oxide; photocatalytic activity; fe2o3 reduced; reduced graphene; activity

Journal Title: Indian Journal of Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.