Abstract Preparation of epoxidized tung oil ethyl ester (ETOEE) was explored in this work via a two-step approach to produce bio-lubricant with enhanced thermal-oxidative stability. Transesterification of tung oil with… Click to show full abstract
Abstract Preparation of epoxidized tung oil ethyl ester (ETOEE) was explored in this work via a two-step approach to produce bio-lubricant with enhanced thermal-oxidative stability. Transesterification of tung oil with ethanol was first carried out with KOH as the catalyst at 60 °C and a molar ratio of tung oil to ethanol of 1:20 for 2 h. The obtained tung oil ethyl ester (TOEE) was subjected to epoxidation in the presence of hydrogen peroxide and formic acid (FA). The highest conversion (93.6%, based on reduction of iodine value) was achieved by reacting 10 g of TOEE with 14.5 g of hydrogen peroxide and 5.86 g of FA at 50 °C for 3 h. Under these conditions, the resulting ETOEE has an oxirane number or epoxy value of 5.1%, and the presence of epoxy groups was confirmed by Fourier transform infrared spectroscopic analysis. The resulting ETOEE was further analyzed of its thermal stability under both oxidative and non-oxidative atmospheres. The viscosity index was determined and improvements in both thermal stability and lubricity were observed with the aid of a modular compact rheometer and a thermos-gravimetric analyzer, respectively. The ETOEE produced may be suitable for use as lubricating oil in gear boxes and engines. Graphic Abstract
               
Click one of the above tabs to view related content.