LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-process modeling and control method for new product collaborative design based on petri net

Photo by edhoradic from unsplash

With the increase of the complexity of new product design (NPD) and in order to adapt the competitive global market, enterprises are not only facing ensure product quality, they also… Click to show full abstract

With the increase of the complexity of new product design (NPD) and in order to adapt the competitive global market, enterprises are not only facing ensure product quality, they also facing how to shorten the design cycle as much as possible. In this context, how to improve NPD efficiency and quality is one of common aims in rapidly changing global market. This paper presents a dual-process modeling and control method for collaborative design of new products based on petri net for this reason. Firstly, the design process is divided into several design stages from the coarse-grained perspective, and the object petri net is established to make the whole design process in a collaborative environment. Secondly, the design relations among the design majors are analyzed from the perspective of fine granularity. This process transforms the complex relationships, establishes the specialty collaborative design meta model and simulates it. The work progress is quantitative analysis and feedback information is controlled based on object petri net. A design method based on factory mode is proposed to control process of design specialty collaboration, while a fuzzy comprehensive evaluation and evaluation compensation is proposed to confirm feedback information for adapting to the dynamic design process. Finally, a case is used to illustrate the method, which shows the effectiveness of the method.

Keywords: petri net; collaborative design; control; process; product; design

Journal Title: Journal of Ambient Intelligence and Humanized Computing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.