LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy efficient VM scheduling for big data processing in cloud computing environments

Photo by neom from unsplash

Recently, the cloud computing platform has come to be widely used to analyze large amounts of data collected in real-time from SNS or IoT sensors. In order to analyze big… Click to show full abstract

Recently, the cloud computing platform has come to be widely used to analyze large amounts of data collected in real-time from SNS or IoT sensors. In order to analyze big data, a large number of VMs are created in the cloud server, and that many PMs are needed to handle it. When VMs are allocated to PMs in cloud computing, each VM is allocated by a VM scheduling algorithm. However, existing scheduling algorithms waste substantial PM resources due to the low density of VM. This waste of resources dramatically reduces the energy efficiency of the entire cloud server. Therefore, minimizing idle PMs by increasing the density of VMs allocated to PMs is critical for VM scheduling. In this paper, a VM relocation method is suggested to improve the energy efficiency by increasing the density of VMs using the Knapsack algorithm. In addition, it is possible through the proposed method to achieve efficient VM relocation in a short period by improving the Knapsack algorithm. Therefore, we proposed the effective resource management method of cloud cluster for big data analysis.

Keywords: big data; energy efficient; vms; cloud computing; cloud

Journal Title: Journal of Ambient Intelligence and Humanized Computing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.