Fog computing (FC) can be considered as a computing paradigm which performs Internet of Things (IoT) applications at the edge of the network. Recently, there is a great growth of… Click to show full abstract
Fog computing (FC) can be considered as a computing paradigm which performs Internet of Things (IoT) applications at the edge of the network. Recently, there is a great growth of data requests and FC which lead to enhance data accessibility and adaptability. However, FC has been exposed to many challenges as load balancing (LB) and adaptation to failure. Many LB strategies have been proposed in cloud computing, but they are still not applied effectively in fog. LB is an important issue to achieve high resource utilization, avoid bottlenecks, avoid overload and low load, and reduce response time. In this paper, a LB and optimization strategy (LBOS) using dynamic resource allocation method based on Reinforcement learning and genetic algorithm is proposed. LBOS monitors the traffic in the network continuously, collects the information about each server load, handles the incoming requests, and distributes them between the available servers equally using dynamic resource allocation method. Hence, it enhances the performance even when it’s the peak time. Accordingly, LBOS is simple and efficient in real-time systems in fog computing such as in the case of healthcare system. LBOS is concerned with designing an IoT-Fog based healthcare system. The proposed IoT-Fog system consists of three layers, namely: (1) IoT layer, (2) fog layer, and (3) cloud layer. Finally, the experiments are carried out and the results show that the proposed solution improves the quality-of-service in the cloud/fog computing environment in terms of the allocation cost and reduce the response time. Comparing the LBOS with the state-of-the-art algorithms, it achieved the best load balancing Level (85.71%). Hence, LBOS is an efficient way to establish the resource utilization and ensure the continuous service.
               
Click one of the above tabs to view related content.