LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydromechanical modelling of the SEALEX experiments

Photo by k_yasser from unsplash

Numerical modelling of coupled physical processes in bentonite–sand mixtures under the geological conditions is significant for designing and constructing sealing systems in deep underground repositories for highly radioactive nuclear waste.… Click to show full abstract

Numerical modelling of coupled physical processes in bentonite–sand mixtures under the geological conditions is significant for designing and constructing sealing systems in deep underground repositories for highly radioactive nuclear waste. Within the framework of DECOVALEX 2015, Task A, this work presents the model validation of OpenGeoSys by numerical modelling of coupled hydromechanical (HM) processes in bentonite–sand mixtures. Parameters used in the HM model were determined by modelling the laboratory tests of the sealing experiment (SEALEX). Afterwards these parameters were applied for the modelling of a small-scale mock-up test considering the influence of technological gap and incidental fail of the seal in the sealing system. In order to investigate the availability of employing these HM parameters and numerical models directly to field predictions, the modelling results and measured data of an in situ SEALEX experiment were analysed comparatively. The modelling results reproduced well the main features in HM behaviour of the compacted bentonite–sand mixture, which denotes that the adopted HM models and parameters are adequate for describing the HM processes in the sealing system. It is necessary to take the elastoplastic behaviour and evolution of the permeability of bentonite–sand mixtures into account when using the adopted models to reproduce the HM processes of a sealing system.

Keywords: sand; modelling sealex; bentonite sand; hydromechanical modelling; sealing system; sand mixtures

Journal Title: Environmental Earth Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.