LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of water demand on hydrological regime under climate and LULC change scenarios

Photo from wikipedia

The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has… Click to show full abstract

The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.

Keywords: water; demand hydrological; climate; water demand; change scenarios

Journal Title: Environmental Earth Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.