LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilization of waste marble to enhance volume change and strength characteristics of sand-stabilized expansive soil

Photo from wikipedia

In this paper, marble waste is evaluated as a secondary material to be utilized as potential stabilizer to improve the volume change and strength characteristics of sand-amended expansive soil, proposed… Click to show full abstract

In this paper, marble waste is evaluated as a secondary material to be utilized as potential stabilizer to improve the volume change and strength characteristics of sand-amended expansive soil, proposed as a possible landfill, pavement or sub-base material in a semi-arid climate. An experimental program was conducted on sand-expansive soil enhanced with marble waste, abundantly found as a by-product of construction industry, obtained from two different sources with different gradations, denoted as marble powder (MP) and marble dust (MD). One-dimensional swell, volumetric shrinkage, consolidation, unconfined compressive and flexural strength tests were conducted on expansive soil–sand mixtures with 5, 10 and 20% waste marble inclusions over curing periods of 7, 28 and 90 days. Test results showed that 10% marble powder and 5% marble dust by dry mass were the optimum amounts for mitigating the swell–shrink potential and compression index as well as yielding the highest unconfined compressive and flexural strength values. Moreover, the rate of reduction in swell potential versus the flexural strength over the curing periods studied is highest in 10% MP- and 5% MD-included specimens, the latter being more insensitive to this change. The soil mixtures displayed brittle behavior after marble addition, hence its utilization as a secondary additive to sand-amended expansive soil is recommended for soils exposed to lower flexural loads such as light traffic.

Keywords: strength; waste; soil; volume change; expansive soil

Journal Title: Environmental Earth Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.