LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measurements of radon (222Rn) and thoron (220Rn) exhalations and their decay product concentrations at Indian Stations in Antarctica

Photo by cass4504 from unsplash

During the 33rd summer expedition to the two Indian Stations at Antarctica, Bharati and Maitri, radon and thoron progeny concentrations in indoors and outdoors were measured along with radon (222Rn)/thoron… Click to show full abstract

During the 33rd summer expedition to the two Indian Stations at Antarctica, Bharati and Maitri, radon and thoron progeny concentrations in indoors and outdoors were measured along with radon (222Rn)/thoron (220Rn) exhalation rate measurements of soil samples, radionuclide content and 222Rn emanation coefficient. This investigation was based on the reports of the higher gamma radiation levels reported around these stations. The results will give an estimate of the radioactivity level as well as the total dose received by personnel carrying out long-term measurements at these stations. Radon and thoron progeny concentrations were measured using direct radon and thoron progeny sensors (DRPS and DTPS). The soil radionuclide content was measured using HPGe gamma spectrometry while radon/thoron exhalation rates were measured using the accumulation method by scintillation radon/thoron monitor. In contrast to a higher radiation field and radioactivity content, studies showed the radon/thoron exhalation rates and progeny concentration to be similar to that measured in normal background areas of other parts of the world. This could be attributed to the ice deposits and the larger atmospheric dispersion, and also to the soil nature which is mainly loamy sands with low clay content contributing to a lower emanation. The results are discussed.

Keywords: stations antarctica; 222rn thoron; indian stations; radon thoron; thoron; radon 222rn

Journal Title: Environmental Earth Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.