Land subsidence occurrence in the Tasuj plane is becoming more frequent and hazardous in the near future due to the water crisis. To mitigate damage caused by land subsidence events,… Click to show full abstract
Land subsidence occurrence in the Tasuj plane is becoming more frequent and hazardous in the near future due to the water crisis. To mitigate damage caused by land subsidence events, it is necessary to determine the susceptible or prone areas. This study focuses on producing and comparing land subsidence susceptibility map (LSSM) using boosted regression tree (BRT), random forest (RF), and classification and regression tree (CART) approaches with twelve influencing variables, namely altitude, slope angle, aspect, groundwater level, groundwater level change, land cover, lithology, distance to fault, distance to stream, stream power index, topographic wetness index, and plan curvature. Moreover, by implementing the Relief-F feature selection method, the most important variables in LSSM procedure were identified. The performance of the adopted methods was assessed using the area under the receiver operating characteristics curve (AUROC) and statistical evaluation indexes. The results showed that all the employed methods performed well; in particular, the BRT model (AUROC = 0.819) yielded higher prediction accuracy than RF (AUROC = 0.798) and CART (AUROC = 0.764). Findings of this study can assist in characterizing and mitigating the related hazard of land subsidence events.
               
Click one of the above tabs to view related content.