LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural Evolution of Ti–Al–Ni (Cr,Co,Fe)-Based High-Entropy Alloys Processed Through Mechanical Alloying

Photo from wikipedia

TiAlNiCr, TiAlNiCrCo, TiAlNiCrFe, TiAlNiCrCoFe, TiAlNiCo, TiAlNiFe and TiAlNiCoFe high-entropy alloys were processed through mechanical alloying followed by spark plasma sintering (SPS). All the alloys develop a BCC (Cr-/Cr–Fe-rich) structure after… Click to show full abstract

TiAlNiCr, TiAlNiCrCo, TiAlNiCrFe, TiAlNiCrCoFe, TiAlNiCo, TiAlNiFe and TiAlNiCoFe high-entropy alloys were processed through mechanical alloying followed by spark plasma sintering (SPS). All the alloys develop a BCC (Cr-/Cr–Fe-rich) structure after mechanical alloying. Sintering at high temperature promotes the formation of one more BCC phase which is of NiAl type. Phase evolution after mechanical alloying and SPS was studied using X-ray diffraction. Composition of the phases was analysed using energy-dispersive spectroscopy, and microstructural characterisation was done using back-scattered electron images. Characterisation studies done on the alloys confirm the presence of BCC phases. Alloys without Cr develop a single BCC peak after SPS compared to alloys with Cr.

Keywords: processed mechanical; entropy alloys; mechanical alloying; high entropy; alloys processed

Journal Title: Transactions of the Indian Institute of Metals
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.