LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Dual Band Wireless Power and Data Through RF Transmission for Biomedical Implants

Photo by campaign_creators from unsplash

In this paper, a new data and power recovery architecture for biomedical microsystem implants is proposed. Our contribution aims to overcome problems resulted by the trade-off between transmission data rate… Click to show full abstract

In this paper, a new data and power recovery architecture for biomedical microsystem implants is proposed. Our contribution aims to overcome problems resulted by the trade-off between transmission data rate and power consumption for systems using the same or the separate inductive link to transmit data and power to the implanted part. The dual separate channels of RF powering and data recovery parts are designed to achieve the back telemetry data and power supply. The RF power recovery system is based on a 4-MHz RF link signal. It provides a regulated 3.3 V for the stimulating stage and 0.9 V for data recovery stage. The receiver based on a non-coherent topology consists of a 3–5-GHz low-noise amplifier (LNA), a squarer, an integrator, and a high-speed decision stage. The LNA of cascaded by cascode inductive source degenerative approach is proposed to decrease the noise figure when respecting linearity and stability conditions. It dissipates 8.89 mA from the 0.9-V power supply. The pulse generator produces an output signal with a maximum power spectral density (PSD) of − 66 dBm/MHz. The power consumption of the data transmission system is approximately equal to 0.664 mW for the emitter and 9.17 mW for the receiver. Simulation results show that this configuration can achieve a 125-Mbps data rate and − 82 dBm at 125-Mbps receiving sensitivity. This topology was designed in 0.18-μm RF-CMOS technology.

Keywords: recovery; data transmission; power; topology; data power

Journal Title: BioNanoScience
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.