LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting protein–protein interaction sites using modified support vector machine

Photo from wikipedia

Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular… Click to show full abstract

Protein–protein interaction plays a fundamental role in many biological processes and diseases. Characterizing protein interaction sites is crucial for the understanding of the mechanism of protein–protein interaction and their cellular functions. In this paper, we proposed a method based on integrated support vector machine (SVM) with a hybrid kernel to predict protein interaction sites. First, a number of features of the protein interaction sites were extracted. Secondly, the technique of sliding window was used to construct a protein feature space based on the influence of the adjacent residues. Thirdly, to avoid the impact of imbalance of the data set on prediction accuracy, we employed boost-strap to re-sample the data. Finally, we built a SVM classifier, whose hybrid kernel comprised a Gaussian kernel and a Polynomial kernel. In addition, an improved particle swarm optimization (PSO) algorithm was applied to optimize the SVM parameters. Experimental results show that the PSO-optimized SVM classifier outperforms existing methods.

Keywords: protein interaction; machine; protein protein; interaction; interaction sites

Journal Title: International Journal of Machine Learning and Cybernetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.