LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exponential input-to-state stability of stochastic neural networks with mixed delays

Photo from wikipedia

This paper is concerned with the exponential input-to-state stability for a class of stochastic neural networks with mixed delays. Based on a new Lyapunov-Krasovskii functional, Itô’s formula, Dynkin’s formula and… Click to show full abstract

This paper is concerned with the exponential input-to-state stability for a class of stochastic neural networks with mixed delays. Based on a new Lyapunov-Krasovskii functional, Itô’s formula, Dynkin’s formula and some inequality techniques, some novel sufficient conditions ensuring the exponential input-to-state stability in the mean square for the given stochastic neural networks are derived. Some existing results are extended. Two numerical examples are provided to illustrate the effectiveness of the proposed method.

Keywords: exponential input; neural networks; stochastic neural; state stability; input state

Journal Title: International Journal of Machine Learning and Cybernetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.