LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local receptive field based extreme learning machine with three channels for histopathological image classification

Photo by cokdewisnu from unsplash

The classification of histopathological images is a challenging task in the study of real-life medicine owing to the diverse geometrical structures and different histology features. This paper proposes a framework… Click to show full abstract

The classification of histopathological images is a challenging task in the study of real-life medicine owing to the diverse geometrical structures and different histology features. This paper proposes a framework called Local Receptive Field based Extreme Learning Machine with Three Channels (3C-LRF-ELM), which can automatically extract histopathological features to diagnose whether there is a disease. We conduct experiments on the real-world image dataset that consists of mammalian lung, kidney and spleen organ images provided by the animal diagnostics lab (ADL) Pennsylvania State University. The training sets are consisted of overlapping blocks which are randomly extracted from arbitrary 40 images of each type image in the ADL dataset. The remaining images are equally divided into 850 blocks, and then they are given to the model 3C-LRF-ELM to generate the labels. The final label of each image is defined by the optimal threshold $$\alpha$$α. The 3C-LRF-ELM can be single layer network or multi-layer network. In this paper, considering the computational complexity, we choose the single layer 3C-LRF-ELM and two layers 3C-LRF-ELM structure to analyze the influence of the number of layers on the experimental results. The experimental results show that the single layer 3C-LRF-ELM structure is better than two layers 3C-LRF-ELM. Compared to the Discriminative Feature-oriented Dictionary Learning, the single layer 3C-LRF-ELM has a better classification performance.

Keywords: machine; layer; image; local receptive; lrf elm; classification

Journal Title: International Journal of Machine Learning and Cybernetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.